
Deriving Backpropagation

Rahul Menon

June 2021

1 Introduction

This document is a list of derivations of equations related to backpropagation
in a multi-layer perceptron. Generalized equations for backpropagation are
covered, as well as specific cases for ReLU, sigmoid, and softmax activated
layers.

1.1 Notation

Within this document, we have a particular notation to refer to various parts
of the network. L represents the loss function. J represents the total number
of layers in the network. The symbols a, z, w, and b represent a specific layer’s
activations, pre-activations, weights, and biases, respectively. The index of the
layer is provided by a superscript (e.g. aj represents the activations of layer j).
We also use σ to represent a general activation function. We use φj as a short
hand for ∇zjL. Any of the vector values can be indexed by a subscript (e.g.
aji is the i’th element of the activations of the j’th layer). Any of the matrix

values can be indexed by multiple comma-separated subscripts (e.g. wji,k is the
element in the i’th row and k’th column of the weights matrix of the j’th layer).

1.2 A Quick Review

This is a brief explanation of how a multi-layer perceptron (MLP) works. Every
layer in an MLP is composed of a linear function followed by a non-linear ac-
tivation function. The result of the linear function is denoted z and is called a
pre-activation. The result of the nonlinear function is denoted a and is called an
activation; the activation function itself is denoted σ. a and z have the following
definitions.

zj = wjaj−1 + bj

aj = σ(zj)

Note that for the first layer (j = 1), we treat the network inputs as a0.
Once the activations for the last layer (aJ) have been calculated, we can then

quantify the performance of the MLP with a loss function. In this document, we

1



denote the loss function as L. There are several kinds of loss functions but they
all take the produced output of the network and calculate some form of difference
from the ground truth. Some examples that we will see in this document include
mean squared-error (MSE), binary cross-entropy, and categorical cross-entropy.

Recall that the end goal is to produce network outputs that are as similar
as possible to the ground truths. We can achieve this by minimizing the loss
function. We will slightly nudge the values of the weights and biases of every
layer in the direction which minimizes the loss the most. By repeating this
process many times, we can arrive at a minimum of the loss function. This
process is known as gradient descent, and the process of calculating the nudges
for each weight and bias value is known as backpropagation.

2 General Backpropagation

In this section, we derive the following four equations that define the majority
of backpropagation.

φJ = ∇aJL ◦ σ′(zJ) (1)

φj = (wj+1)Tφj+1 ◦ σ′(zj) (2)

∇wjL = φj(aj−1)T (3)

∇bjL = φj (4)

Equation 1 describes the gradient of the loss function with respect to the pre-
activations of the last layer. Equation 2 describes a recursive formula for calcu-
lating the gradient of the loss function with respect to the pre-activations of any
layer given the same for the next layer. Equation 3 defines the gradient of the
loss function with respect to the weights of any layer, a scaled version of which
is used as the value to update those weights by. Equation 4 defines a similar
gradient but for biases instead of weights.

2.1 Last Layer Gradient (Equation 1)

We wish to derive an equation for ∇zJL which we denote with φJ . Recall that
a loss function is defined in terms of a ground truth y and network output aJ ,
often denoted ŷ. ŷ in turn is a function of zJ . We can then use the chain rule
to get the gradient we want.

φJ = ∇zJL
= ∇ŷL ◦ ∇zJ ŷ
= ∇aJL ◦ ∇zJaJ

2



Since we define aJ = σ(zJ), we can also define ∇zJaJ = σ′(zJ). The value of
∇aJL will depend on the specific loss function used. A few examples are shown
in section 3. This gives us Equation 1.

φJ = ∇aJL ◦ σ′(zJ)

2.2 Recursive Layer Gradient (Equation 2)

We can continue using the chain rule to find equations for any φj . However, in
this section it is simpler if we also use the component form of our equations.

φji =
∂L

∂zji

=
∑
k

∂L

∂zj+1
i

∂zj+1
i

∂zji

=
∑
k

φj+1
i

∂zj+1
i

∂zji

To evaluate
∂zj+1
i

∂zji
, observe that

zj+1
k =

∑
i

wj+1
k,i a

j
i + bj+1

i =
∑
i

wj+1
k,i σ(zji ) + bj+1

i

Differentiating this, we have

∂zj+1
i

∂zji
= wj+1

k,i σ
′(zji )

We can substitute this into our earlier equation to obtain

φji =
∑
k

wj+1
k,i φ

j+1
i σ(zji )

Converting this from component form to matrix form, we obtain Equation 2.

φj = (wj+1)Tφj+1 ◦ σ(zji )

Observe that by using both Equations 1 and 2, we can calculate φj for any
1 ≤ j ≤ J .

2.3 Weights Gradient (Equation 3)

Given φj we can calculate any ∇wjL by using the chain rule. We can use
component form to simplify our expressions.

∂L

∂wji,k
=
∂L

∂zji

∂zji
∂wji,k

= φji
∂zji
∂wji,k

3



Recall that we have the following definition of zji .

zji = bji +
∑
k

wji,ka
j−1
k

Differentiating, we obtain
∂zji
∂wji,k

= aj−1k

We can then substitute this into our earlier expression and convert back to
matrix form to obtain Equation 3.

∂L

∂wji,k
= φjia

j−1
k

∇wjL = φj(aj−1)T

2.4 Biases Gradient (Equation 4)

We can calculate any ∇bjL given φj . We will once again be using the chain
rule.

∇bjL = ∇zjL∇bjzj

= φj∇bjzj

Recall our definition of zj .
zj = wjaj + bj

Differentiating, we have that
∇bjzj = 1

where 1 is a matrix composed of ones. Then, substituting back into our earlier
equation, we obtain Equation 4.

∇bjL = φj1

∇bj = φj

3 Specific cases

In the following sections, we evaluate Equations 1 and 2 for specific common
activation functions. Equation 2 applies for hidden layers, while Equation 1
applies for output (last) layers.

3.1 ReLU

The Rectified Linear Unit (ReLU) activation function operates on a scalar and
is applied elementwise on a vector input. It is defined as follows.

σ(x) =

{
x x > 0

0 x ≤ 0

4



The ReLU function is technically not differentiable at x = 0, but we need to be
able to evaluate the derivative at that point. For the purposes of most machine
learning, therefore, we often choose to define the derivative as 0 at 0. Thus, the
derivative of ReLU is defined as follows.

σ′(x) =

{
1 x > 0

0 x ≤ 0

3.1.1 ReLU in the Last Layer

A variety of loss functions are often used with ReLU activations in the last
layer. We will only consider mean squared-error (MSE) in this document. MSE
is defined as follows.

L =
1

n

n∑
i=1

(yi − ŷi)2

Recall that ŷ = aJ so ∇ŷL = ∇aJL. Then we have the following.

∇aJL = ∇ŷL

= ∇ŷ

(
1

n

n∑
i=1

(yi − ŷi)2
)

= − 2

n
(y − ŷ)

= − 2

n
(y − aJ)

Substituting this and our defined derivative for ReLU into Equation 1, we get
the ReLU form of Equation 1.

φJ = ∇aJL ◦ σ′(zJ)

= − 2

n
(y − aJ) ◦

{
1 zJ > 0

0 zJ ≤ 0

φJ =

{
− 2
n (y − aJ) zJ > 0

0 zJ ≤ 0

Note that the comparisons performed above are performed elementwise and so
produce individual elements of a vector.

5



3.1.2 ReLU in a Hidden Layer

Evaluating the ReLU form of Equation 2 is just a matter of plugging in our
ReLU derivative.

φj = (wj+1)Tφj+1 ◦ σ′(zj)

= (wj+1)Tφj+1 ◦

{
1 zj > 0

0 zj ≤ 0

φj =

{
(wj+1)Tφj+1 zj > 0

0 zj ≤ 0

3.2 Sigmoid

The sigmoid activation function also operates on scalar values and is applied
elementwise on a vector input. It is defined as follows.

σ(x) =
1

1 + e−x

Finding the derivative of sigmoid is not covered in this document (consider it
an exercise for the reader). This derivative can be expressed as below, which is
convenient for code implementation purposes.

σ′(x) = σ(x) ◦ (1− σ(x))

3.2.1 Sigmoid in the Last Layer

In the last layer, sigmoid is often paired with the binary cross-entropy loss
function, which is defined as follows.

L =

n∑
i=1

−yi log(ŷi)− (1− yi) log(1− ŷi)

We keep the summation in the equation for use with multi-label classifications
problems, but for binary classification problems n = 1 so the summation is not
necessary. However, for the sake of generality, we will consider the summation

6



form. Now we can again use the fact that ŷ = aJ so ∇ŷL = ∇aJL.

∇aJL = ∇ŷL

= ∇ŷ

(
n∑
i=1

−yi log(ŷi)− (1− yi) log(1− ŷi)

)

= −y
ŷ

log(e)− 1− y
1− ŷ

log(e)

= −y
ŷ
− 1− y

1− ŷ

= − y

aJ
− 1− y

1− aJ

Notice that we drop the constant log(e). Dropping such constants are common
practice in machine learning math because they only serve to linearly scale and
not to provide any extra information. We are now ready to substitute this with
our sigmoid derivative into Equation 1 to obtain the sigmoid form of Equation
1.

φJ = ∇aJL ◦ σ′(zJ)

φJ =

(
− y

aJ
− 1− y

1− aJ

)
◦ σ(x) ◦ (1− σ(x))

3.2.2 Sigmoid in a Hidden Layer

As with ReLU, evaluating the sigmoid form of Equation 2 is simply a matter of
substituting in our sigmoid derivative.

φj = (wj+1)Tφj+1 ◦ σ′(zj)
φj = (wj+1)Tφj+1 ◦ σ(x) ◦ (1− σ(x))

3.3 Softmax

Unlike ReLU or sigmoid, the softmax activation function operates on vector
values. It converts the input vector into a sort of probability density function
such that the sum of elements is equal to 1. It is defined as follows.

σ(x) =
ex∑
i e
xi

It is important to note that softmax is exclusively used as an activation function
for the output layers of networks, and as such we do not evaluate Equation 2 for
it. We also will not evaluate the derivative of softmax, nor will it be necessary
for evaluating Equation 1.

7



3.3.1 Softmax in the Last Layer

Softmax is almost always paired with a categorical cross-entropy loss function,
which is defined as follows.

L = −
∑
j

yj log ŷj

With softmax, trying to substitute into Equation 1 as we did with ReLU
and sigmoid is rather difficult. Instead, we attempt to directly differentiate L
with respect to zJ using the fact that ŷ = aJ = σ(zJ).

We can first take advantage of the fact that y is a one-hot vector to simplify
our definition of L. Observe that by definition, a one-hot vector has one entry
with value 1 and the rest with value 0. This means that only a single term in
the sum in our definition of L is nonzero, so the sum itself is equivalent to that
term. Let the index of that term be γ such that yγ = 1.

L = −yγ log ŷγ

= − log ŷγ

= − log

(
ez
J
γ∑

k e
zJk

)
= − log ez

J
γ + log

∑
k

ez
J
k

= −zJγ + log
∑
k

ez
J
k

With this new definition of L, finding ∇zJL is much simpler.

∇zJL = ∇zJ
(
−zJγ + log

∑
k

ez
J
k

)
= ∇zJ log

∑
k

ez
J
k −∇zJ zJγ

8



Here we can make use of a property of logarithms. Specifically, we can use the
fact that d

dx ln(f(x)) = 1
f(x)

d
dxf(x). Notice that this is simply an application of

the chain rule.

∇zJL =
1∑
k e

zJk
∇zJ

∑
k

ez
J
k −∇zJ zJγ

=
ez
J∑

k e
zJk
−∇zJ zJγ

=
ez
J∑

k e
zJk
−

{
1 i = γ

0 i 6= γ

= ŷ −

{
1 i = γ

0 i 6= γ

= ŷ − y
= aJ − y

The piecewise portion of the above equations refers to the creation of a one-hot
matrix where the γ’th element is 1. The result of the above is the softmax form
of Equation 1. Thus we have

φJ = aJ − y

9


